Setting Up Oracle AI Services
- Creating an AI Service Instance:
- Log in to the OCI Console.
- Navigate to AI Services → Create Service.
- Select the service (e.g., Data Science, AI Platform) and follow the prompts to create an instance.
- Building a Machine Learning Model with OCI Data Science
- Creating a Data Science Project:
oci data-science project create --compartment-id <compartment_OCID> --display-name "MyMLProject" --description "Project for predictive analytics"
Creating and Uploading Datasets:
oci data-science dataset create --compartment-id <compartment_OCID> --display-name "MyDataset" --data-location <object_storage_location> --format CSV
Creating a Model Training Job:
oci data-science job create --compartment-id <compartment_OCID> --project-id <project_OCID> --display-name "MyModelTrainingJob" --job-type "CUSTOM" --arguments '{"training_script":"<script_location>", "hyperparameters": {"learning_rate": 0.01}}'
Deploying and Using the Model
Deploying the Model:
oci data-science model-deployment create --compartment-id <compartment_OCID> --display-name "MyModelDeployment" --model-id <model_OCID> --deployment-config '{"instance_type": "VM.Standard2.2"}'
Invoking the Model Endpoint:
curl -X POST <model_endpoint_url> -H "Content-Type: application/json" -d '{"features": [value1, value2, ...]}'
Integrating Predictive Analytics into Business Workflows
- Creating Dashboards and Visualizations:
- Use OCI Analytics Cloud or Oracle Analytics for visualization.
- Example: Create a dashboard to visualize predictions and trends based on model output.
Automating Predictions:
- Set up automated workflows using OCI Functions to trigger model predictions based on new data.
- Example Function Deployment:
fn deploy --app myapp --image <docker_image> --env "MODEL_ENDPOINT_URL=<model_endpoint_url>"
Monitoring and Managing Models
- Monitoring Model Performance:
- Use OCI Monitoring to track model performance metrics (e.g., accuracy, latency).
- Example
oci monitoring metric-data list --compartment-id <compartment_OCID> --metric-name "model_accuracy"
Updating and Retraining Models:
- Periodically retrain the model with new data to improve performance.
- Example:
oci data-science job create --compartment-id <compartment_OCID> --project-id <project_OCID> --display-name "ModelRetrainingJob" --job-type "CUSTOM" --arguments '{"training_script":"<new_script_location>", "hyperparameters": {"learning_rate": 0.001}}'
Thank you
Osama